A Riemannian Statistical Shape Model using Differential Coordinates
نویسندگان
چکیده
We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidian structure. A key advantage of our framework is that statistics in a manifold shape space become numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidian approach in terms of shape-based classification of morphological disorders.
منابع مشابه
Principal Spine Shape Deformation Modes Using Riemannian Geometry and Articulated Models
We present a method to extract principal deformation modes from a set of articulated models describing the human spine. The spine was expressed as a set of rigid transforms that superpose local coordinates systems of neighbouring vertebrae. To take into account the fact that rigid transforms belong to a Riemannian manifold, the Fréchet mean and a generalized covariance computed in the exponenti...
متن کاملFast Manifold Learning Based on Riemannian Normal Coordinates
We present a novel method for manifold learning, i.e. identification of the low-dimensional manifold-like structure present in a set of data points in a possibly high-dimensional space. The main idea is derived from the concept of Riemannian normal coordinates. This coordinate system is in a way a generalization of Cartesian coordinates in Euclidean space. We translate this idea to a cloud of d...
متن کاملThe Florida State University College of Arts and Sciences a Riemannian Framework for Annotated Curves Analysis
We propose a Riemannian framework for shape analysis of annotated curves, curves that have certain attributes defined along them, in addition to their geometries. These attributes may be in form of vector-valued functions, discrete landmarks, or symbolic labels, and provide auxiliary information along the curves. The resulting shape analysis, that is comparing, matching, and deforming, is natur...
متن کاملUnsupervised Shape Clustering using Diffusion Maps
The quotient space of all smooth and connected curves represented by a fixed number of boundary points is a finite-dimensional Riemannian manifold, also known as a shape manifold. This makes the preservation of locality a critically important issue when reducing the dimensionality of shapes on the manifold. We present a completely unsupervised clustering algorithm employing diffusion maps for l...
متن کاملLeft-Invariant Riemannian Elasticity: a distance on shape diffeomorphisms ?
In inter-subject registration, one often lacks a good model of the transformation variability to choose the optimal regularization. Some works attempt to model the variability in a statistical way, but the re-introduction in a registration algorithm is not easy. In [1], we interpreted the elastic energy as the distance of the Green-St Venant strain tensor to the identity. By changing the Euclid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016